NumPy 数组形状修改
NumPy 修改数组形状的一些操作
数组的形状是每个维中元素的数量。
获取数组的形状
打印 2-D 数组的形状:
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.shape)
运行结果
上面的例子返回 (2, 4),这意味着该数组有 2 个维,每个维有 4 个元素。
利用 ndmin 使用值 1,2,3,4 的向量创建有 5 个维度的数组,并验证最后一个维度的值为 4:
import numpy as np
arr = np.array([1, 2, 3, 4], ndmin=5)
print(arr)
print('shape of array :', arr.shape)
运行结果
[[[[[1 2 3 4]]]]]
shape of array : (1, 1, 1, 1, 4)
元组的形状代表什么?
每个索引处的整数表明相应维度拥有的元素数量。
上例中的索引 4,我们的值为 4,因此可以说第 5 个 ( 4 + 1 th) 维度有 4 个元素。
修改数组形状
数组的形状是每个维中元素的数量。通过修改数组形状,我们可以添加或删除维度或更改每个维度中的元素数量。
从 1-D 重塑为 2-D
将以下具有 12 个元素的 1-D 数组转换为 2-D 数组。
最外面的维度将有 4 个数组,每个数组包含 3 个元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 3)
print(newarr)
运行结果
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
从 1-D 重塑为 3-D
将以下具有 12 个元素的 1-D 数组转换为 3-D 数组。
最外面的维度将具有 2 个数组,其中包含 3 个数组,每个数组包含 2 个元素:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(2, 3, 2)
print(newarr)
运行结果
[[[ 1 2]
[ 3 4]
[ 5 6]]
[[ 7 8]
[ 9 10]
[11 12]]]
数组可以修改成任何形状吗?
是的,只要重塑所需的元素在两种形状中均相等。
我们可以将 8 元素 1D 数组重塑为 2 行 2D 数组中的 4 个元素,但是我们不能将其重塑为 3 元素 3 行 2D 数组,因为这将需要 3x3 = 9 个元素。
尝试将具有 8 个元素的 1D 数组转换为每个维度中具有 3 个元素的 2D 数组(将产生错误):
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
newarr = arr.reshape(3, 3)
print(newarr)
运行结果
Traceback (most recent call last):
File "test.py", line 5, in
ValueError: cannot reshape array of size 8 into shape (3,3)
未知的维
您可以使用一个“未知”维度。
这意味着您不必在 reshape 方法中为维度之一指定确切的数字。
传递 -1 作为值,NumPy 将为您计算该数字。
将 8 个元素的 1D 数组转换为 2x2 元素的 3D 数组:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
newarr = arr.reshape(2, 2, -1)
print(newarr)
运行结果
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]
注意:我们不能将 -1 传递给一个以上的维度。
展平数组
展平数组(Flattening the arrays)是指将多维数组转换为 1D 数组。
我们可以使用 reshape(-1) 来做到这一点。
把数组转换为 1D 数组:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
newarr = arr.reshape(-1)
print(newarr)
运行结果
有很多功能可以更改 numpy flatten、ravel 中数组形状,还可以重新排列元素 rot90、flip、fliplr、flipud 等。这些功能属于 numpy 的中级至高级部分。